

and Xiaojun Ruan Xiaoquan Xu

Introductior

Main results

SI2-quasicontinuo spaces

 \mathcal{GD} -convergence in SI_2 -quasicontinuous spaces

Sl₂-quasicontinuous spaces

Xiaojun Ruan (joint with Xiaoquan Xu)

Email: rxj54188@163.com

Department of Mathematics Nanchang University

4th, July, 2022

▲□▶▲□▶▲□▶▲□▶ 三日 のへで

Contents

*Sl*₂quasicontinuous spaces

Xiaojun Ruan and Xiaoquan Xu

Introduction

Main results

SI₂-quasicontinuo spaces

GD-convergence in *Sl*₂-quasicontinuous spaces 1 Introduction

Main results

• Sl₂-quasicontinuous spaces

• *GD*-convergence in *Sl*₂-quasicontinuous spaces

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Contents

*Sl*₂quasicontinuous spaces Xiaojun Ruan

and Xiaojun Ruan Xiaoquan Xu

Introduction

Main results

SI₂-quasicontinuc spaces

GD-convergence ir *Sl*₂-quasicontinuous spaces Introduction

Main results

• Sl₂-quasicontinuous spaces

• *GD*-convergence in *SI*₂-quasicontinuous spaces

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

*SI*₂quasicontinuous spaces Xiaojun Ruan and Xiaoquan

Xu

Introduction

Main results

spaces

GD-convergence in *SI*2-quasicontinuous spaces The theory of continuous lattices and domains which arose from computer science and logic, is based on the investigation of directed complete posets (dcpos, for short). Since there are important mathematical models which fail to be dcpos, there is an attempt to carry as much as possible of the theory of continuous lattices to as general an ordered structure as possible.

*SI*₂quasicontinuous spaces Xiaojun Ruan and Xiaoquan

Introduction

Main results Sl₂-quasicontinuous spaces GD-convergence ir Sl₂-quasicontinuous Moreover, Erné pointed out the importance of the concept of standard completions in the context of generalized continuous posets. In the absence of enough joins, Erné introduced the concept of s₂-continuous posets and the weak Scott topology by means of the cuts instead of joins. Quasicontinuous domains introduced by Gierz, Lawson and Stralka capture many of the essential features of continuous domains and pop up from time to time generalizing slightly the powerful notion of continuous domains.

Sl₂quasicontinuous spaces Xiaojun Ruan and Xiaoquan

Introduction

Main results

spaces GD-convergen

SI₂-quasicontinuo spaces At the 6th International Symposium in Domain Theory, J.D. Lawson emphasized the need to develop the core of domain theory directly in T_0 topological spaces instead of posets. Moreover, it was pointed out that several results in domain theory can be lifted from the context of posets to T_0 topological spaces.

quasicontinuous spaces Xiaojun Ruan and Xiaoquan Xu

Slo-

Introduction

Main results Sl₂-quasicontinuous spaces GD-convergence in Sl₂-quasicontinuous spaces

The concept of S-convergence for dcpos was introduced by Scott to characterize continuous domains. It was proved that for a dcpo, the S-convergence is topological if and only if it is a continuous domain. By different convergence, not only are many notions of continuity characterized, but also they make order and topology across each other. Zhao and Ho defined a new way-below relation and a new topology constructed from any given topology on a set using irreducible sets in a T_0 topological space replacing directed subsets and investigated the properties of this derived topology and k-bounded spaces.

*SI*₂quasicontinuous spaces Xiaojun Ruan and Xiaoquan

Introduction

Vain results SI2-quasicontinuou spaces

GD-convergence in *Sl*₂-quasicontinuous spaces

In this paper, we introduce the concepts of SI_{2} -quasicontinuous spaces and \mathcal{GD} -convergence of nets for arbitrary topological spaces by the cuts. We show that a space is Sl₂-guasicontinuous if and only if its weakly irreducible topology is hypercontinuous under inclusion order. Finally we arrive at a conclusion that a T_0 space X is Sl₂-guasicontinuous if and only if the \mathcal{GD} -convergence in X is topological.

Contents

*SI*₂quasicontinuous spaces

Xiaojun Ruan and Xiaoquan Xu

Introduction

Main results

SI2-quasicontinuo spaces

 \mathcal{GD} -convergence ir SI_2 -quasicontinuous spaces

Introduction

Main results

- Sl₂-quasicontinuous spaces
- *GD*-convergence in *SI*₂-quasicontinuous spaces

quasicontinuous spaces Xiaojun Ruan and Xiaoquan

Slo-

Introductior

Main results

SI₂-quasicontinuous spaces

 \mathcal{GD} -convergence in SI_2 -quasicontinuous spaces Recall some concepts of posets and topological spaces.

For a poset $P, x \in P, A \subseteq P$, define $\downarrow A = \{x \in P : x \le a \text{ for} \text{ some } a \in A\}$ and dually, $\uparrow A$. A^{\uparrow} and A^{\downarrow} denote the sets of all upper and lower bounds of A, respectively. A cut operator δ is defined by $A^{\delta} = (A^{\uparrow})^{\downarrow}$ for all $A \subseteq P$. Notice that whenever A has a join (supremum) then $x \in A^{\delta}$ means $x \le \lor A$. Let $P^{(<\omega)}$ be the set of all nonempty finite subsets of P.

For a topological space (X, τ) , the *specialization order* \leq on *X* is defined by $y \leq x$ if and only if $y \in cl(\{x\})$. If (X, τ) is T_0 then the specialization order is a partial order.

*Sl*₂quasicontinuous spaces Xiaojun Ruan

and Xiaoqua Xu

Introduction

Main results

SI₂-quasicontinuous spaces

 \mathcal{GD} -convergence in SI_2 -quasicontinuous spaces

Let (X, τ) be a topological space. A nonempty subset $F \subseteq X$ is called *irreducible* if for every closed sets *B* and *C*, whenever $F \subseteq B \cup C$, one has either $F \subseteq B$ or $F \subseteq C$. The set of all irreducible sets of the topological space (X, τ) will be denoted by $Irr_{\tau}(X)$ or Irr(X).

Unless otherwise stated, in the context of T_0 spaces, all order-theoretic concepts such as lower sets, upper sets, etc, are taken with respect to the specialization order of the underlying spaces.

*SI*₂quasicontinuous spaces

Xiaojun Ruan and Xiaoquan Xu

Introductior

Main results

SI₂-quasicontinuous spaces

GD-convergence in *SI*₂-quasicontinuous spaces

Lemma

Let (X, τ) be a T_0 space.

(1) If $D \subseteq X$ is a directed set with respect to the specialization order, then D is irreducible;

(2) If $U \subseteq X$ is an open set, then U is an upper set; Similarly, if $F \subseteq X$ is a closed set, then F is a lower set.

Definition (see [1])

*SI*2quasicontinuous spaces

Xiaojun Ruan and Xiaoquan Xu

Introductior

Main results

SI2-quasicontinuous spaces

 \mathcal{GD} -convergence in Sl_2 -quasicontinuous spaces

Let X be a T_0 space and $x \in X$, $A, B \subseteq X$. We say that A is way below B and write $A \ll_r B$ if for all irreducible sets $E \subseteq X, B \cap E^{\delta} \neq \emptyset$ implies $A \cap E \neq \emptyset$. We write $A \ll_r x$ for $A \ll_r \{x\}$ and $y \ll_r B$ for $\{y\} \ll_r B$. The set $\{x \in X : A \ll_r x\}$ is denoted by $\uparrow_r A$.

 S. Z. Luo, X. Q. Xu, On Sl₂-continuous Spaces, Electronic Notes in Theoretical Computer Science, **345**(2019), 125-141.

*Sl*2quasicontinuous spaces

Definition

Xiaojun Ruan and Xiaoquan Xu

Introduction

Main results

SI2-quasicontinuous spaces

 \mathcal{GD} -convergence in SI_2 -quasicontinuous spaces A T_0 space (X, τ) is called Sl_2 -quasicontinuous if for all $x \in X$, the following conditions are satisfied: (1) $w(x) = \{F \subseteq X : F \in X^{(<\omega)} \text{ and } F \ll_r x\}$ is directed;

(2)
$$\uparrow x = \bigcap \{\uparrow F : F \in w(x)\};$$

(3) For any $H \in X^{(<\omega)}$, $\uparrow_r H \in \tau$.

Clearly, an SI_2 -continuous space must be SI_2 -quasicontinuous, but the converse may not be true.

*Sl*₂quasicontinuous spaces

Xiaojun Ruan and Xiaoquan Xu

Introduction

Main results

SI2-quasicontinuous spaces

GD-convergence in SI_2 -quasicontinuous spaces

Remark

 Let *P* be a poset. Then *P* is an *s*₂-quasicontinuous poset if and only if it is an *Sl*₂-quasicontinuous space with respect to the Alexandroff topology.

(2) Let (X, τ) be a T₀ space. If X is an
 Sl₂-quasicontinuous space, then it is also an
 s₂-quasicontinuous poset under the specialization order. But the converse may not be true.

*Sl*₂quasicontinuous spaces

Xiaojun Ruan and Xiaoquan Xu

Introduction

Main results

SI2-quasicontinuous spaces

 \mathcal{GD} -convergence in SI_2 -quasicontinuous spaces

Example

Let X be an infinite set with a cofinite topology τ . Then it is a T₁ space. Clearly it is an antichain under the specialization order, and hence it is an s₂-continuous poset. Thus it is also s₂-quasicontinuous. But $\uparrow_r x = \{x\} \notin \tau$ for all $x \in X$, then (X, τ) is not an Sl₂-quasicontinuous space.

*Sl*₂quasicontinuous spaces

Xiaojun Ruan and Xiaoquan Xu

Introduction

Main results

SI2-quasicontinuous spaces

 \mathcal{GD} -convergence in SI_2 -quasicontinuous spaces

We now derive the interpolation property of SI_2 -quasicontinuous spaces.

Theorem

Let X be an SI_2 -quasicontinuous space. Then

- (1) For $x \in X$, $F \ll_r x$ implies that there exists $G \in w(x)$ such that $F \ll_r G \ll_r x$.
- (2) For any $F, H \in X^{(<\omega)}, F \ll_r H$ implies that there exists $G \in X^{(<\omega)}$ such that $F \ll_r G \ll_r H$.
- (3) For all F ∈ X^(<ω), E ∈ Irr(X), F ≪_r E^δ implies that there exists e ∈ E with F ≪_r e.

Definition (see [1, 2])

*Sl*₂quasicontinuous spaces

Xiaojun Ruan and Xiaoquan Xu

Introductior

Main results

SI2-quasicontinuous spaces

 \mathcal{GD} -convergence in SI_2 -quasicontinuous spaces

Let (X, τ) be a T_0 space. A subset $U \subseteq X$ is called weakly irreducibly open if the following conditions are satisfied: (1) $U \in \tau$; (2) $F^{\delta} \cap U \neq \emptyset$ implies $F \cap U \neq \emptyset$ for all $F \in Irr_{\tau}(X)$. The set of all weakly irreducibly open sets of (X, τ) is a topology, which will be called weakly irreducible topology of X and will be denoted by $\tau_{Sl_2}(X)$.

[1] S. Z. Luo, X. Q. Xu, On SI₂-continuous Spaces, Electronic Notes in Theoretical Computer Science, **345**(2019), 125-141.

[2] X. J. Ruan, X. Q. Xu , On a new convergence in topological spces, Open Mathematics, **17**(2019), 1716-1723.

*SI*₂quasicontinuous spaces

Xiaojun Ruan and Xiaoquan Xu

Introductior

Main results

SI2-quasicontinuous spaces

GD-convergence in SI₂-quasicontinuous spaces

Proposition

Let (X, τ) be an SI₂-quasicontinuous space.

(1) For any nonempty set $H \subseteq X$, $\uparrow_r H = int_{\tau_{Sl_2(X)}} \uparrow H$.

(2) A subset U of X is weakly irreducibly open iff for each $x \in U$ there exists a finite $F \ll_r x$ such that $\uparrow F \subseteq U$.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

(3) The sets $\{\uparrow_r F : F \in X^{(<\omega)}\}$ form a basis for $\tau_{Sb(X)}$.

*Sl*₂quasicontinuous spaces

Xiaojun Ruan and Xiaoquan Xu

Introduction

Main results

SI2-quasicontinuous spaces

GD-convergence in SI₂-quasicontinuous spaces Now we give the topological characterizations of Sl_2 -quasicontinuous spaces.

Theorem

(1) *X* is an SI_2 -quasicontinuous space;

(2) For all $x \in X$ and $U \in \tau_{Sl_2}(X)$, $x \in U$ implies that there exists $F \in X^{(<\omega)}$ such that $x \in int_{\tau_{Sl_2}(X)} \uparrow F \subseteq \uparrow F \subseteq U$;

(3) $(\tau_{Sl_2}(X)), \subseteq$) is a hypercontinuous lattice.

*SI*₂quasicontinuous spaces Xiaojun Ruan

and Xiaoqua Xu

Introduction

Main results

SI2-quasicontinuou spaces

 \mathcal{GD} -convergence in Sl_2 -quasicontinuous spaces

In this section, the concept of \mathcal{GD} -convergence in a poset is introduced. It is proved that the T_0 space X is SI_2 -quasicontinuous if and only if the \mathcal{GD} -convergence in X is topological.

Definition

Let *X* be a T_0 space and $(x_j)_{j \in J}$ a net in *X*. $F \subseteq X$ is called a quasi-eventual lower bound of a net $(x_j)_{j \in J}$ in *P*, if *F* is finite and there exists $k \in J$ such that $x_j \in f$ for all $k \leq j$ with respect to the specialization order.

spaces

*Sl*₂quasicontinuous spaces

Xiaojun Ruan and Xiaoquan Xu

Introduction

Main results

SI₂-quasicontinuo spaces

 \mathcal{GD} -convergence in SI_2 -quasicontinuous spaces

Definition

Let *X* be a T_0 space and $(x_j)_{j \in J}$ a net. We say $(x_j)_{j \in J}$ quasi \mathcal{D} converges to $x \in X$ if there exists a directed family $\mathcal{F} = \{F \subseteq X : F \text{ is finite}\}$ of a quasi-eventual lower bounds of the net $(x_j)_{j \in J}$ in *X* with respect to the specialization order such that $\bigcap_{F \in \mathcal{F}} \uparrow F \subseteq \uparrow x$. In this case we write $x \equiv_{\mathcal{GD}} \lim x_j$.

spaces

Proposition

*SI*₂quasicontinuous spaces

Xiaojun Ruan and Xiaoquan Xu

Introductio

Main results

SI2-quasicontinuou spaces

 \mathcal{GD} -convergence in Sl_2 -quasicontinuous spaces

Let X be an Sl_2 -quasicontinuous space. Then $x \equiv_{\mathcal{GD}} \lim x_j$ if and only if the net $(x_j)_{j \in J}$ converges to the element x with respect to the topology $\tau_{Sl_2}(X)$. That is, the \mathcal{GD} -convergence is topological.

spaces

Proposition

*SI*₂quasicontinuous spaces

and Xiaoquan Xu

Introduction

Main results

SI₂-quasicontinuo spaces

 \mathcal{GD} -convergence in Sl_2 -quasicontinuous spaces

Let (X, τ) be a T_0 space. If the \mathcal{GD} -convergence with respect to the topology $\tau_{Sl_2}(X)$ is topological, then X is Sl_2 -quasicontinuous.

spaces

*Sl*₂quasicontinuous spaces

Xiaojun Ruan and Xiaoquan Xu

Introductior

Main result

SI₂-quasicontinuo. spaces

 \mathcal{GD} -convergence in Sl_2 -quasicontinuous spaces

Theorem

Let X be a T_0 space. Then the following statements are equivalent:

(1) *Sl*₂-quasicontinuous space;

 (2) The *GD*-convergence with respect to the topology *τ*_{Sl₂}(*X*) is topological, that is, for all *x* ∈ *X* and all nets (*x_j*)_{*j*∈J} in *X*, *x* ≡_{*GD*}lim *x_j* if and only if (*x_j*)_{*j*∈J} converges to *x* with respect to the weakly irreducible topology.

\mathcal{GD} -convergence in $\overline{SI_2}$ -quasicontinuous

spaces

Corollary (see [3])

*SI*2quasicontinuous spaces

Xiaojun Ruan and Xiaoquan Xu

Introductior

Main results

SI2-quasicontinuo spaces

 \mathcal{GD} -convergence in Sl_2 -quasicontinuous spaces

Let P be a dcpo. Then the following conditions are equivalent:

(1) *P* is a quasicontinuous domain;

(2) S*-convergence in P is topological for the Scott topology σ(P), that is, for all x ∈ P and all nets (x_j)_{j∈J} in P, (x_j)_{j∈J} S*-converges to x if and only if (x_j)_{j∈J} converges to x with respect to the Scott topology.

[3] L. J. Zhou, Q. G. Li, Convergence on quasi-continuous domain, Journal of Computational Analysis and Applications, **15**(2013), 381-390.

spaces

Corollary (see [2])

*SI*₂quasicontinuous spaces

Xiaojun Ruan and Xiaoquan Xu

Introductior

Main results

SI2-quasicontinuou spaces

 \mathcal{GD} -convergence in Sl_2 -quasicontinuous spaces

Let P be a poset. Then the following conditions are equivalent:

(1) P is s_2 -quasicontinuous;

(2) The *GS*-convergence in *P* is topological for the weak Scott topology *σ*₂(*P*), that is, for all *x* ∈ *P* and all nets (*x_j*)_{*j*∈J} in *P*, *x* ≡_{*GS*}lim *x_j* if and only if (*x_j*)_{*j*∈J} converges to *x* with respect to the weak Scott topology.

[2] X. J. Ruan, X. Q. Xu, Convergence in s₂-quasicontinuous posets, Springerplus,
4(2016), 1-10.

*SI*₂quasicontinuous spaces Xiaojun Ruan and Xiaoquan

Acknowledge

Thank you for your attention !